Deeply Supervised 3D Recurrent FCN for Salient Object Detection in Videos

نویسندگان

  • Trung-Nghia Le
  • Akihiro Sugimoto
چکیده

This paper presents a novel end-to-end 3D fully convolutional network for salient object detection in videos. The proposed network uses 3D filters in the spatiotemporal domain to directly learn both spatial and temporal information to have 3D deep features, and transfers the 3D deep features to pixel-level saliency prediction, outputting saliency voxels. In our network, we combine the refinement at each layer and deep supervision to efficiently and accurately detect salient object boundaries. The refinement module recurrently enhances to learn contextual information into the feature map. Applying deeply-supervised learning to hidden layers, on the other hand, improves details of the intermediate saliency voxel, and thus the saliency voxel is refined progressively to become finer and finer. Intensive experiments using publicly available benchmark datasets confirm that our network outperforms state-of-the-art methods. The proposed saliency model also effectively works for video object segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Convolutional Neural Network for Fast Anomaly Detection in Crowded Scenes

We present an efficient method for detecting and localizing anomalies in videos showing crowded scenes. Research on fully convolutional neural networks (FCNs) has shown the potentials of this technology for object detection and localization, especially in images. We investigate how to involve temporal data, and how to transform a supervised FCN into an unsupervised one such that the resulting F...

متن کامل

بخش‌بندی معنادار مدل‌ سه‌بعدی اجسام بر اساس استخراج برجستگی‌ها و هسته جسم

3D model segmentation has an important role in 3D model processing programs such as retrieval, compression and watermarking. In this paper, a new 3D model segmentation algorithm is proposed. Cognitive science research introduces 3D object decomposition as a way of object analysis and detection with human. There are two general types of segments which are obtained from decomposition based on thi...

متن کامل

Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection

Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...

متن کامل

Weakly Supervised Object Localization on grocery shelves using simple FCN and Synthetic Dataset

We propose a weakly supervised method using two algorithms to predict object bounding boxes given only an image classification dataset. First algorithm is a simple Fully Convolutional Network (FCN) trained to classify object instances. We use the property of FCN to return a mask for images larger than training images to get a primary output segmentation mask during test time by passing an image...

متن کامل

Weakly Supervised Learning for Salient Object Detection

Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017